
AD-A253 870
I'1I' iII I 11 i ii ' I

:"I - II I u's

DEFENCE-RESEARCH AGENCY
MALVERN

MEMORANDUM No. 4503 (Issue 2)

LIES, DAMNED LIES AND DATABASES

Author: S Wiseman

ODTIC
ELECTE

-AUG0 51992

Cv)
DEFENCE RESEARCH AGENCY,

MALVERN, Reproduced From

WORCS. Best Available Copy

This document has been approved I ' "u
for public rele and sale; itsis u idI t II li ite 2 ..

" 92 8 03 166
UNLIMITED

CONDTONS OF RELEASE
0127748 311447

SaSCE.. .*33a~ DRIC U

CROWN COPYRIGHT (C)
1992
CONTROLLER
HMSO LONDON

DRI Y

Repofta quoted are not necessarily available to membefs of the public or to commercia
orgwatmlions-

DEFENCE RESEARCH AGENCY, MALVERN

Memorandum 4503

Issue 2

Title: LIES, DAMNED LIES AND DATABASES

Author: SIMON WISEMAN

Date: APRIL 1992

ABSTRACT

A database is usually expected to give correct and complete answers to queries. However,
some applications take confidentiality to an extreme and require the database to deceive some
users by supplying incorrect answers. This paper examines these requirements and studies the
effectiveness of three database security techniques in this area.

Accesion For

NTIS CRA&I
DTIC QUj1LIT--- OTIC TAB El

Uamlaloumced U-

Justification

By

0 . ibution I

Availability Codes

Copyright
Special

Crown Copyright P..
1992

Lies, Damned Lies and Databases

A database management system (DBMS) provides services for storing and retrieving
information in a way which is logically independent of the physical storage structures
employed. In a secure database, where confidentiality is of prime concern, the stored
information is ascribed various classifications and there is a requirement that no user, or
process running on their behalf, may obtain information unless their clearance dominates its

-- lassification.

In addition to ensuring that information is not directly given to users with insufficient
clearances, the DBMS, like any other secure system, must ensure that classified information
is not leaked indirectly. Highly classified information could be encoded, using the facilities
of the DBMS, in a way which makes it appear to be of lower classification. Users with low
clearances who know the encoding scheme would then receive highly classified information
from a Trojan Horse operating at the higher level.

An additional requirement is that the database schema must be inferentially secure
[Morgenstern88], that is highly classified information can never be inferred from lowly
classified information. Solving this inference problem, and the allied aggregation problem,
is the concern of the database design process, and has been dealt with elsewhere [Lunt89].

So it is necessary for both the design of the database schema and the DBMS to be secure.
However, confidentiality is not the only security problem. Integrity is an important concern
and is partly addressed through the use of constraints in the database schema. The use of
constraints can be likened to the use of defensive programming techniques. They are the first
line of defence for integrity as they ensure the database is always in a valid state, though they
do not guarantee that this state is appropriate [Terry89]. By offering constraint enforcement as
a general service, a DBMS makes the implementation of robust applications more cost
effective.

One important reason for using a DBMS to store information is, therefore, that it helps preserve
the integrity of the information it holds. However, there are applications where different users
are required to have views of the same information which, while they are individually self-
consistent, actually contradict each other. In particular, a database can be required to lie about
the true state of the world to some users. At first sight this appears to be a requirement for
databases which have no integrity, but actually the database must lie consistently and
properly, and the integrity of the lies is extremely important.

Most of the examples of this kind arise in the military intelligence arena, however a good
example occurs in the medical world1 . On reaching a conclusi~n about a patient's condition, a
Doctor might tell the patient they have Bronchitis and send them off for hospital tests. However,
the Doctor tells the hospital that lung cancer is suspected. The deception must be maintained to
avoid premature concern in the patient and embarrassment to the Doctor.

This paper examines some of the requirements for databases which are intended to deceive
some users and compares the effectiveness of three secure database implementation
techniques in this kind of application. Section two introduces some example requirements for
deceptive databases while section three informally presents security models for three
implementation techniques. In section four, the suitability of the three techniques is examined
with respect to applications which deceive with integrity. Finally, section five summarises the
position.

IThis example was given by John Dobson at the 1990 IFIP WG11.3 Database Security
Workshop to illustrate a point from [Martin901.

There are requirements for various different kinds of deception in a secure database. These
range from "white lies", which seek to protect the innocent from the sordid truth, to the really
deceitful lies which aim to mislead and corrupt. This section discusses the various
possibilities and illustrates them with examples, but first it considers what the responses of an
honest database should be.

Typically, a database is interrogated by requests that as-k for all information meeting certain
criteria, such as "how far is the Space Ship Comet from Earth?". To such questions an honest
secure database would reply either with the required information, or with notification that the
user has insufficient clearance to calculate the result, or with notification that the resulting
information itself is too highly classified, or perhaps some combination of all three.

The following example is given to illustrate these three kinds of honest response. The notation
of the fact model is used [Sowerbutts9O], and the facts, question and replies are summarised in
Figure 2.1.

The facts.
Unclassified: Comet is going somewhere
Confidential: Comet is going to Earth
Secret: Comet is 42. parsecs from EAh

The question.
"How far is the SS Comet from Earth?"

The answers.
Unclassified: you have insufficient clearance to calculate answer
Confidential: you are not cleared to know the distance
Secret: 42.59

Figure 2.1: Example facts and honest answers to a question.

So the Space Ship Comet is going to Earth and is currently at a distance of 42.59 parsecs, and
this information is Secret. However, the fact that the Comet is going somewhere is
Unclassified and that its destination is Earth is Confidential. Users who ask "how far is SS
Comet from Earth?" will get different answers depending on their clearance.

A user with a clearance of Unclassified would get the answer "you have insufficient
clearances to calculate the answer". This is because the DBMS.must check that Comet is
actually going to Earth, but it finds that a Confidential fact must be examined to ascertain
whether this is true. Therefore the reply cannot be "Comet is not going to Earth" because it
might be, so the DBMS gives the non-committal, but truthful, reply which essentially says it
doesn't know (at that level of clearance). Note that the same answer would be received if the
Unclassified user asked "how far is SS Comet from Vesuvius?".

A Confidential user would receive "you are not cleared to know the distance". This is on the
basis that the DBMS can tell that Comet is going to Earth, but when it goes to find out the
distance it discovers the user is not cleared to see it. Thus the DBMS is able to give a reply
which confirms that the Comet is heading for Earth, but the actual distance cannot be revealed.
Again this is an honest reply, and is more detailed than that given to the Unclassified user, but
it is not the complete answer.

A Secret user obviously gets the answer "42.59" which is the whole truth. This does imply the
fact that Comet is going to Earth, but this fact is only Confidential and therefore no leak has
occurred.

2

Research has shown that Proton Missiles, carried by all Space Ships in the Community's fleet,
may be hazardous to the health of the crew. However, to avoid lowering morale it is necessary
not only to keep the details secret but also to classify the very existence of the information.
Anyone without the appropriate clearances who asks about the health hazards of Proton
Missiles will be told "there is no information of that kind".

.An example of this is shown in Figure 2.2. The database deceives Unclassified users, by
claiming that no such information is stored. Confidential users get an honest answer, to the
effect that there is no information of that kind available to them but there is information which
they cannot see. Secret users are told that the information does exist, but they are not allowed to
know the details. Only Top Secret users get the complete truth.

The facts.
Unclassified: nothing is known
Confidential: there is some Secret information
Secret: there is data about radiation from the Mk4 missile
Top Secret: MkA missile emits 9a femtoUrgs per second

The question.
"How much radiation does the Mk4 missile emit?"

The answers.
Unclassified: there is nothing about radiation from MK4 missiles
Confidential: if that information exists, you cannot see it
Secret: you are not cleared to know the radiation output
Top Secret: 94.8

Figure 2.2: Example of denying the existence of information.

Note that the reply to Unclassified users categorically denies the existence of the information,
which is a complete lie, whereas Confidential and Secret users receive truthful, but incomplete,
answers.

The invasion of neighbouring Romantic space by the Community needs to be a well kept secret,
since success relies on complete surprise. So when SS Magna Carta is loaded with invasion
troops and sent to Romance, a cover story has to be invented to avoid suspicion.

The facts.
Unclassified: ana Carta is going to Romance
Confidential: Magna. ar a has a covert mission
Unclassified: Mima Carta is going to Romance to (dlieraid
Secret: invade

The question.
"Why is Magna Carta going to Romance?"

The answers.
Unclassified: to deliver aid
Confidential: low users think its to deliver aid, but its really something covert
Secret: low users think its to deliver aid, but really its to invade

Figure 2.3: Example of a cover story.

3

Thus the general public are told that Magna Carta is on a mercy mission to deliver aid, while
highly cleared users are told of its real purpose. It is possible that there are some users who
know the mission is covert and that a cover story has been created, but they cannot find out
details of the real mission. Figure 2.3 shows the example, with the cover story shown by
enclosing the different versions in brackets. This is to emphasise the difference between
having two contradictory facts and having a cover story.

In this example, a Space Ship can be heading to only one destination at any one time and this
can only be for one reason. If the cover story was simply given as an additional fact at the

-.Secret level, as in Figure 2.4, this would contradict the Unclassified fact. This contradiction
violates the integrity constraint of unique destination and purpose per ship.

Thus in figure 2.3 the notation shows that the Magna Carta is going to Romance to invade, and
this is Secret. It also says that a cover story exists, which can be seen by Unclassified users.
The story is that the Magna Carta is going to Romance to deliver aid. By contrast, figure 2.4
shows the Magna Carta is going to Romance to invade and deliver aid. There is no
information available to indicate that the Unclassified fact represents a cover story, since it
may simply be that inconsistent data has been entered.

I U n c l a s s i fi e d : M a e n a C a r ta i s g oi n g to R om a n c e t o deie ai

Secret: MgoaCarta is going to Romance to invade

Figure 2.4: Facts which violate integrity.

So the integrity constraint which insists each ship has a unique destination and purpose is
important. Without it an errant user or application software would be able to send Magna Carta
to Romance for refueling at the same time as it is going to invade (or rather deliver aid if you
are not cleared to Secret). The use of weakened forms of integrity, such as Polyinstantiation
Integrity [Denning88l, go some way to avoiding this problem, but these do not stop an errant
program at a different security level entering the contradiction.

2A4 Serc about Changes

Eventually, when the Magna Carta reaches Romance, the cover story is revealed, but later the
SS Adventurer heads for Romance to support the ill fated invasion. This is common
knowledge, however, on route the Adventurer falls prey to a previously unencountered life
form. Back at HQ, intelligence sources realise that Adventurer isn't going to make it to the
battle. However, this information must be kept Secret since the Romantics are currently
falling back and the Community troops are pressing forward, all because they think the
Adventurer is coming.

The facts.
Unclassified: Adventurer is going to Romance
Unclassified: Adventurer will reach Romance in (1hour
Secret: 1 week

The question.
"When will Adventurer reach Romance?"

The answers.
Unclassified: 1 hour
Secret: low users think its 1 hour, but really its 1 week

Figure 2.5: Example of secrecy about changes.

This example is just like a cover story, though it arises in a different way, and is shown in
Figure 2.5. As far as the Unclassified Community troops and any eavesdropping Romantics
are concerned, the Adventurer is about to arrive. However, the commanders know that it has
been seriously delayed and can make suitable plans.

4

The difference between this kind of example and cover stories is that here the Unclassified fact
started off as the truth. Only later did the truth change to a highly classified fact and the low
information became a cover story. With a cover story, the truth is initially highly classified
and a misleading version is deliberately entered with a lower classification.

The facts.
Unclassified: Adventurer is going to Romance
Secret (Tactical): Adventurer will reach Romance in 1.084 weeks
Secret (Strategic): I week

The question.
"When will Adventurer reach Romance?"

The answers.
Unclassified: you are not cleared to know
Secret (Tactical): 1.084 weeks
Secret (Strategic): 1 week

Figure 2.6: Example of a precis.

The example shown in Figure 2.5 gives different answers depending on the user's clearance,
though it is also possible that the answer could depend on some other attribute of the user, such
as their role. This is useful if the requirement is to hide changes which occur frequently, as it
can be used to present certain users with a prdcis of some information. This kind of "white lie"
is quite different to a cover story, since it can actually be beneficial because it hides rapidly
changing irrelevant detail.

Figure 2.6 gives an example of a prdcis which is based on whether the user is playing a
Tactical or Strategic role. The tactical information is accurate but will be changing rapidly,
though most changes will be small and irrelevant to the Strategic user who wants a more global
picture. Obviously some integrity constraints would be required to ensure that the Strategic
picture does not become too out of line with the Tactical information, but this concern is not
addressed here.

In this example, the Secret users ask the same question but receive a reply which depends on
their role. Although they need not know of the other's existence, it is not of paramount
importance to keep the other hidden. This differs from cover stories where hiding the existence
of a cover can be vital.

A problem that occurs with rapidly changing information concerns the ability to serialise
concurrent transactions. From an integrity point of view it is essential that all concurrent
execution of transactions can be seen as some serial executio of the transactions. Generally,
schemes which ensure this are the basis for covert channels in a secure DBMS, but proposals
have been made for secure serialisation [Keefe90]. These however are prone to availability
problems, whereby a highly cleared user wishing to obtain a consistent picture of lowly
classified information may repeatedly be rolled-back because the low information keeps
changing. The use of a pr6cis would reduce the frequency of changes and make it more likely
that the high users could complete their work.

In this section, three techniques for database security are described. Rather than describe them
in terms of a data modt' and argue that they are secure, a security model is used to model them
and this is related to the relational data model as a justification of the model's
appropriateness. The use of a model to describe the way in which the techniques work is
necessary to enable the confidentiality controls, on which the integrity of the deceptions rely, to
be clearly identified. Also it avoids describing specific secure DBMSs, which necessarily

5

, I 7. .7 M-. .

introduce additional constraints and features which are not directly relevant to this
discussion.

A simple Bell-LaPadula style of security model [Bell74] is used. The important aspects of this
model are that:

1). Objects are classified containers and a policy of "no flows down" is enforced;

2). No flows down is not violated by transitions which involve a "pure write" or "append" kind
of alteration of high Objects while also observing or modif ing low Objects;

3). Objects may be created and destroyed and an Object's classification may be raised at any
time, though an addressing Hierarchy is employed to ensure that no covert channels arise
through these operations;

4). An Object's classification may be lowered at any time, subject to the controls of the
Hierarchy and as long as its original contents are completely destroyed and the new
classification dominates the sources of the new contents;

5). The roots of the Hierarchy are either fixed or their creation and destruction is subject to
some unspecified control which avoids the potential covert channels.

The models presented here are abstract interpretations and do not necessarily reflect how such
databases are implemented in practice. Also, it is likely that more constraints will be imposed
on the database by implementation considerations.

8.1 olEinstantiation

The most widely proposed and used technique for providing secure DBMSs is called
Polyinstantiation I [Denning87l. Other flavours of Polyinstantiation have been proposed
[Haigh90] [Jajodia90], but all are covered by the model given here.

There are two kinds of Object in this model: collections of facts and schema details. A
collection of facts has a classification, which applies to all facts in the collection. The
Collection Objects can only be accessed through the Schema Object that describes the facts that
they contain. The classification of a Schema Object is always dominated by the classification
of any Collection that it refers to.

The Schema Objects correspond to tables in the relational model. The Collection Objects
contain single level subsets of the table. If data is classified at the row level, all rows of the
same classification are stored in one Collection Object. If fields are separately labelled, data
from different Collections must be joined in some way, [Denning8'] [Jajodia90l, to reconstruct
the multi-level information.

A new fact can be added to the database by adding it to one of the collections. This alters one of
the Collection Objects and so the user must have a clearance which is dominated by the
classification of the collection. The user's clearance must also dominate the classification of
the Schema Object in order that they can "address" the Collection Object.

Although this model allows a user to overclassify a fact, by inserting it into a Collection Object
whose clearance strictly dominates their clearance, it is unlikely to be implemented because of

1Polyinstantiation refers to the simultaneous existence of multiple objects with the same name
that are distinguished by their classification [Denning87]. Allowing polyinstantiation is one
technique for closing covert channels that arise when creating and deleting objects.
Polyinstantiation is not an inevitable consequence of multi-level security.

6

the difficulty in providing a "pure" write which alters just part of an Object. Thus in practice it
is likely that a user will only be able to insert a fact at their own level.

Similarly, a user can delete a fact which is in a Collection whose classification dominates
their clearance, but again this is likely to be limited in an implementation to deleting at their
level.

Users can observe facts which are in a Collection Object only if its classification is dominated
by their clearance.

A high user cannot update a low fact, but Polyinstan'iiiting databases generally change such
requests into inserts at the higher level. The low Collection is observed, the fact is modified
according to the requested update and then inserted into a collection whose classification is
that of the user's clearance. No low Collection Object has been modified so the operation
preserves confidentiality.

For example, suppose the database contained the Unclassified fact that "Adventurer is
carrying Bananas to Earth". If a Secret user were to change the cargo to Misiles this would be
translated into an insert of the Secret fact "Advn.tr is carrying Missiles to Earth".

However, an insert is not possible if an appropriate collection does not exist to hold the new fact.
A new Collection Object can only be created by a user whose clearance equals the classification
of the Schema Object. This is because the address of the new Collection Object must be written
into the Schema Object, which is its parent in the Hierarchy. This problem can be overcome by
having a Schema Object per security level, but in this paper the simpler model will be used as it
does not materially affect how polyinstantiating databases can be used for deception.

A user who wishes to establish the truth of a fact must be able to observe the appropriate Schema
Object in order to determine which Collection Objects need to be examined. If the fact is found
then it is true, but if the fact is not found it is either false or too highly classified for the user to
see.

In general, some of the facts described by a schema will be too highly classified for the user to
see. Thus it is not possible to enforce integrity constraints which can only be established by
examination of all the facts. Polyinstantiating databases can therefore only enforce
weakened forms of Entity Integrity and Referential Integrity [Burns90l.

As an example, suppose that the database contains two Schemas, both Unclassified. The first
concerns captains of space ships and says that facts of the form -- is the Captain of the -" are
stored. The second Schema is about space ships' destinations, with the facts having the form "
is going to ". The actual facts about captains can be either Unclassified or Secret, because the
Schema refers to two Collection Objects with those classifications. Similarly for destinations.
However, there are currently no Secret facts about captains. This is shown in Figure 3.1. Each
box is an Object and the arrows and indentation reflect the Hierarchy.

U Lis the Captain ofthe.

U Church is the Captain of the AdvnturerAtil& is the Captain of the D IUab
S

U L is going to
-- U ' vetue is going to Romance 1

---4 S is going to Earth

Figure 3.1: Two Schemas each with two Collections.

7

Now suppose that a Secret user wishes to change the destination of the Adventurer to Vesuvius.
The user can observe the fact that Adventurer is currently heading for Romance, because the
Collection is Unclassified, but is prevented from altering it because this would be a write down.
However, the polyinstantiating database treats the user's update as a request to insert a new
fact at the higher level. Thus a new Secret fact is placed in the Secret Collection. Figure 3.2

- shows the position after this update.

U L is the Captain ofthe _
U Church is the Captain of the Adven ur

JAtila is the Captain of the D1Wmdg1b

U L is going to__
U g is going to &MA=

S eis going to Ejh
u gis going to Yesiiu

Figure 3.2: After updating Adventurer's destination.

Note that the original fact, that Adventurer is going to Romance, still exists. It is visible to
Unclassified users, who are unaware that any change has been made. Secret users can observe
both the original fact and the new one.

It was the intention that ships have unique destinations, thus this example database has lost its
integrity. If the user had logged in at Unclassified and deleted the fact that "Adventurer is
going to Romance" and then logged in at Secret and inserted "Adventurer is going to
Vesuvius", integrity would have been preserved. However, a low user could always insert
contradictory information without knowing it.

Thus with Polyinstantiation, integrity cannot be enforced except by careful design of the
application [Burns90. However, this detracts from the benefit of using a DBMS.

3. View Based Classification

A lesser known alternative to Polyinstantiation for enforcing confidentiality in databases is
the use of View Based Classifications [Wilson88] [Knode88]. In this model there are Schema
Objects and Value Objects. A Schema Object describes a class of facts, such as -is going to-,
and gives all possible facts, whether they are true or not. With each possible fact is kept the
address of the Value Object which records whether the fact actually is true or not.

In relational terms, a view is a description of all possible tuples that could occur in the view,
along with a note of which tuples are currently in the view. A tuple may only be inserted into a
view if it is one of the possible tuples. When views are used to classify information, a
classification is attached to each possible tuple in the view and this is the classification of the
tuple if it becomes part of the view.

In the model, the Schema Object contains a description of a view, by enumerating all the
possible facts. However, in practice the view will be described algorithmically and the
true/false values will be represented by storing the facts corresponding to the true values. In
order to reduce the amount of' trusted code required, systems using this technique only allow
simple view definitions (Garvey88], but the model describes the general situation.

When a new class of facts is introduced, all the possible facts are calculated and a description
is placed in a new Schema Object. For each possible fact, a new Value Object is created and is
associated with the possible fact. The creation of all these Objects must be controlled, perhaps
using the Hierarchy, in order to avoid a covert channel.

8

The Value Objects are given a classification which is appropriate for the fact if it were true.
This may be higher than the clearance of the user who is creating it. The initial value of the
fact is set as appropriate, though obviously this cannot be with a value of true if the
classification is higher than the clearance of the user, unless such deliberate
overclassification is required.

The classification of a fact may depend on information other than its own value, such as the
truth of other facts. Thus it is possible that the Schema may refer to several Value Objects for the
same possible fact. Integrity constraints will usually ensure that only one of these has the
value true.

A new fact is added to the database by changing the appropriate Value to true. In order to do this
the user's clearance must be dominated by the classification of the Value Object, to avoid a flow
down, though usually the user's clearance and the ilassification will be equal. Note that new
Objects are created only when new kinds of fact are introduced, rather than when possible facts
are made true. Thus no covert channel arises through inserting new facts. Deleting facts is
similar.

Updating involves changing one Value Object to false and another to true. Since the user's
clearance must be dominated by the classifications of both Value Objects in order for them to be
altered, it is generally the case that a user may only update a fact "at their clearance".
However, as noted by [Garvey88], it is possible for the database to "polyinstantiate" by
converting an update of a low fact into an insert of a high fact.

A user who wishes to establish the truth of a fact searches the appropriate Schema Object for a
description of the fact of interest. The corresponding Value Object is then examined to find the
answer. If the user can observe the corresponding Value Object, then the answer can be
determined as true or false. However, if the user's clearance does not dominate the
classification of the Value Object the answer cannot be determined.

Generally, integrity constraints can be applied to ensure that those facts which are flagged as
true form a consistent picture. Users may only modify the database if they, or the DBMS on
their behalf, can determine that the integrity constraints are still met. The proposals in
[Wilson88] and [Knode881 ensure this is possible in certain important cases by restricting each
fact to having at most one classification.

U Church is the Captain of the Adventure -) U IF--
Chrch is the Captain of the Adven -) false
Church is the Captain of the Ma Carta -) C alse
IAtila is the Captain of the DeendW~be . U

U is going to mnc) S
Advntueris going to Veuvius -. S false
nrer is going to Earth - U f

Dnabk is going to Vesuius) U PJ

Figure 3.3: Two classes of fact each with four possibilities.

Now consider the example, shown in Figure 3.3, where the database contains two Unclassified
facts. There are actually two classes of fact, described by two Schema Objects. Each describes
four possible facts and so addresses four Value Objects of varying classification. Note that the
example views do not admit all possible combinations of elements, so for some unspecified
reason it is not possible for Attila to be the Captain of the Adventurer.

Assume that Entity Integrity is in force for both schemas, that is a Ship may only have one
destination and that a Captain can only be in charge of one Ship. Now consider the example
where a Secret user attempts to change the destination of the Adventurer from Romance to

9

Vesuvius. The user is unable to change the Value Object of "Adventurer is going to Romance"
to false, because this is an Unclassified Object and so the operation would constitute a flow
down. However, unless this fact is marked as false, it is not possible to change the destination
to Vesuvius because of Entity Integrity.

One way out of this impasse is to use polyinstantiation. This allows the Secret user to add a new
destination without altering the original. However, this does not preserve Entity Integrity,
since the ship ends up with two destinations.

-.-The only method for changing from an Unclassified destination to a Secret one is for an
Unclassified user to change the Value Object of the original destination to false and a Secret
user to add the new destination. Obviously if this requires a real user to log in at Unclassified
and then to change to Secret this will be inconvenient, but the use of a multi-level secure
workstation, such as [Cummings87], would undoubtedly improve the user interface.

However, the need to "log in" twice raises a more serious integrity problem in some cases.
Suppose the database has .-n integrity constraint which insists that a ship always has exactly
one destination. The problem is that, because two transactions are required to make the update
an illegal state, in which the ship has either no destination or two destinations, becomes visible
to others.

A potential solution to these problems is to use high water marks, or floating labels
[Woodward87], to allow the user's clearance to rise during a transaction. At the start of the
transaction the user's clearance is set to Unclassified. The user sets "Adventurer is going to
Romance" to false. The classification is now raised to Secret and the user decides on the new
destination, Vesuvius, and "Adventurer is going to Vesuvius" is set to true. Once the update
has completed, the changes can be committed. This means that no other user sees the database
in an inconsistent state, that is the Adventurer always has exactly one destination.

However, this solution is not secure because of the nature of transactions. A user can propose to
modify low data and then decide whether to commit or roll back the transaction on the basis of
high data. This causes a downward flow because the changes to low data depend on high data.
Thus high water marks within a transaction are insecure.

A more subtle problem is illustrated by this example. If the constraint that a ship always has
one destination is enforced, once the update has been completed an Unclassified user can infer
that Adventuxrer is heading to Vesuvius. This is because the Unclassified user is able to see that
it is heading nowhere else. While this problem can be avoided by suitable data design [Lunt89],
it does mean that any schemas designed for such a secure database will have to be evaluated in
some way to determine that they do not admit such an inference problem. The need for such
scrutiny was recognised by [Wilson88], but such inferences are actually a potential problem in
all secure systems, though they become more evident in databases because the data has more
structure and classifications are applied with a finer grain of protection.

U Inser Ipw Anmmanch

Another alternative to Polyinstantiation is the Insert Low approach [Wiseman90al. In this
model there is an Object for each class of fact, which contains schema information, and one for
each true fact. The Schema Objects contain the addresses of the Fact Objects, which are their
subordinates in the Hierarchy. The Fact Objects referred to by a Schema Object may have
various classifications, all of which dominate the classification of the Schema Object. When a
new Schema Object is created, the Hierarchy, or some unspecified control, is used to ensure
that no covert channel is admitted.

In relational terms, the Schema Object corresponds to a table and the Fact Objects to a row or
field, depending on the granularity of labelling. The Hierarchy ensures that users can only
detect the existence of fields and rows if their clearance allows them to "pass through" the
table. If fields are individually classified, a row is made up of several Fact Objects, each

10

describing the relationship between one subset of the columns. Thus there are generally more
Facts per row than there are columns.

When a new fact is inserted a new Fact Object is created, as a subordinate to the Schema Object,
and the value of the fact is placed in it. In addition, the address of the new Fact Object must be
placed in the Schema Object, thus the user's clearance must equal the classification of the
Schema Object. However, the new fact may have a greater classification, though the user would
then be unable to see what they have inserted.

-- So only low users can insert, hence the name of the approach. While this may sound
excessively restrictive it actually places no more -constraints on the users other than are
required for the enforcement of both confidentiality and integrity.

Similarly, to delete a fact it is necessary to remove its address from the Schema Object. This
means that only users whose clearance equals the classification of the Schema Object can
delete facts.

To update a fact, a user must first find the appropriate Fact Object and modify it. Thus their
clearance must be dominated by the classification of the Fact Object. However, the user will
normally observe something of the Fact Object's original value, since pure writes are difficult
to achieve in practice, and so the clearance will usually equal the classification.

A user who wishes to establish the truth of a fact must examine all the Fact Objects referred to by
the appropriate Schema Object. If all the necessary Fact Objects can be observed, the user
obtains a complete answer. However, if some have classifications which are not dominated by
the user's clearance, the answer may not be complete.

Integrity constraints can be applied generally, but users may only modify the database if they
(or rather the DBMS on their behalf) can establish that the constraints are not violated.

For example, in order to determine that Entity Integrity is preserved when inserting a new
fact, it is necessary to be able to examine all existing facts to check that the "key" is not already
present. The user's clearance must equal the classification of the Schema Object to be able to
insert and so if any Fact Object has a classification higher than that of the Schema Object the
user will be unable to confirm that Entity Integrity is upheld1 . Note that a user with higher
clearances could check for Entity Integrity but is prevented from inserting because of the
"existence" covert channel. That is, unless the "key" facts all have classifications equal to the
Schema Object's classification, new facts cannot be inserted.

So although it is not strictly necessary for keys to be single level, on the whole they will be to
allow new facts to be inserted. This introduces a potential availability problem, but it is easily
controlled by applying integrity constraints to the classifications. of the Facts.

Now consider the example of a user wishing to change the Adventurer's destination from
Romance to Vesuvius. The fact that the destination is to change is unclassified, while the fact
that the destination is to be Vesuvius is Secret. Obviously the user is cleared to at least Secret.
Initially the database contains two Schemas, each referring to one Fact. This is shown in
Figure 3.4.

. U [is the Captain of the - - U lChurch is the Captain of the Ady==

U _gtis going to R U RMA
Figure 3.4: Two Schemas with two Facts.

IRejecting an insert for this reason does not lead to a covert channel because it is only the
value of the fact that is highly classified, not its existence.

11

So the Secret user needs to change the database as seen by Unclassified users. To avoid
downward flows the user must log in at Unclassified and delete the fact that the Adventurer is
going to Romance. Next a new Fact Object is created which is classified Secret, even though the
user's current clearance is Unclassified. Into this new Fact Object is placed some
Unclassified information, namely that Adventurer is going somewhere (effectively a null).
The user now logs out and back in at Secret and updates the fact to record the true destination,
Vesuvius.

However, suppose there is an integrity constraint which insists that ships always have a
-- estination. The solution just described allows the Adventurer to have a null destination for a

short time, contrary to the integrity constraint. An altetnative approach avoids this problem.
The user logs in at Unclassified and upgrades the Fact Object which records the destination of
the Adventurer. Note that changing the classification of a Fact Object is secure if the user's
clearance equals the Schema Object's classification, because the Hierarchy hides the change
from users with lower clearances. Figure 3.5 shows the database after this action has been
committed.

U L is the Captain of the J- U IChurch is the Captain of the Adventurer
U [S is going to - SI[g is going to Rmanc

Figure 3.5: After upgrading the Fact.

Once the Fact Object is classified Secret, the user can log in at Secret and update its contents to
the desired value. The final result is shown in Figure 3.6.

U J_ is the Captain of the _ - U IChurch is the Captain of the AdventurerI
U I- is going to S t is oing toY i

Figure 3.6: After updating the Fact.

With the Insert Low approach the opposite is also possible. An Unclassified user may change a
Secret destination to an Unclassified one, assuming that this is reasonable from an integrity
point of view, as follows.

The Schema objects will, in practice, contain information about how facts like "A is
going somewhere" and "Advnturer is going to Vesuviu" are related. This would allow an
Unclassified user to identify which Fact Object contains the Adventurer's destination, though
without revealing the contents of the Fact Object. The Unclassified user may change the
classification of the Fact Object to Unclassified as long as they completely overwrite the
original information1 . There is no covert channel because the Hierarchy stops any lower user
from seeing the changes.

Figure 3.7 shows the state after an Unclassified user has changed the destination of the
Adventurer to Earth. Note that this is secure since the Unclassified user learns nothing of its
previous destination and that the Hierarchy ensures no uses with lower clearances sees the
classification change. Note that this form of "pure write" can be implemented since a complete
Object is overwritten.

U is the Captain of the -- U Church is th Captain of the A t
U is going to - U A o is going to EaXh

Figure 3.7: After updating the Fact to a lower value.

1A low user overwriting high data is not a confidentiality problem ([Bell741 allows it!). Like
any alteration of the database, even high users overwriting high data, it is likely that it would
be governed by integrity controls, such as described in [Wiseman90b].

12

These methods of updating not only avoid polyinstantiation but preserve integrity constraints
which insist that facts of a certain form always exist. The cost of avoiding polyinstantiation is
that the user must log in and out, though this would be alleviated by utilising a multi-level
workstation, but the benefit is that the database's integrity is preserved and that this can be
enforced by the DBMS.

4. Iemption with InteritW-

In this section the three techniques for database security are examined with regard their
suitability for applications that require some users to be deceived. The important issue is how
well they enforce the integrity of the deception. If i~itegrity cannot be preserved, users who
should see the truth may become confused or the users who are supposed to be deceived, but
without knowing it, may detect inconsistencies which reveal the existence of the deception.

4.1 Denvinr Existence

Denying the existence of a class of facts is relatively straightforward with any of the three
techniques. Essentially the existence of the schema information which describes the sensitive
facts must be hidden from the users who must not know such facts exist.

In all three approaches, the sensitive schema information is held inside Schema Objects,
though these differ in format for each method. Only users whose clearance dominates the
classification of a Schema can observe details of the schema. Without this information a user
is unable to ascertain whether the information being hidden is of interest. So in most cases
simply classifying the Schema Objects appropriately is sufficient to protect sensitive
information.

However, in extreme cases it is necessary for the database to be constructed so that it does not
reveal everything to some of its users, and yet they remain convinced that nothing is being
withheld from them. A user who finds that they are unable to observe a Schema Object may be
alerted to the fact that the database is not telling them the whole truth. Thus it is sometimes
necessary to hide the existence of certain Schema Objects, not just their contents.

This, however, is the purpose of the Hierarchy. In the discussions about each approach, it was
assumed that some control was being applied to prevent the creation of new Schema Objects
from being used as a covert channel. Essentially this will be the use of either a special function
which is trusted to not exploit the channel, or some extra level of Hierarchy which will hide the
creation from users whose clearance does not dominate the clearance of the creator.

This extra level of Hierarchy can be used to ensure that users with insufficient clearances
cannot detect the existence of schemas which they must not know exist. However, this is not a
complete solution because these users will discover that there are things they are not allowed to
see, although they will not necessarily know that they are scliemas. Unfortunately, Bell-
LaPadula style models do not lie about the existence of Objects (strictly, whether they are
activated or not) and so the problem cannot be fixed within the simple modelling framework
chosen here.

The requirement is for an Object whose existence cannot be detected by users of lower
clearance. Thus, a user should receive the same error message if they attempt to access one of
these hidden Objects as if they attempt to access a non-existent Object. The requirement can be
implemented, though care must be taken to avoid covert timing channels which inadvertently
reveal the two reasons for the same reply. However, in the absence of a suitable model this
paper will leave the problem to future research and just indicate that existence needs to be
hidden by drawing the Object's classification in outline format, eg. C.

To implement the example of section 2.2, two Schema Objects are required. Figures 4.1, 4.2 and
4.3 show this for each of the three techniques. One Schema lists those missiles for which the

13

system records radiation information, the other records the actual radiation output for each of
these missiles. The existence of both these Schemas is hidden inside a "directory" of
Confidential schemas, thus an Unclassified user cannot detect that there is any information
which they are not entitled to see. Confidential users will be able to discover that two schemas
exist, but will be unable to determine what they describe.

C [Schemas whose existence is Confidential -

) S Ithere is data on the - missile I
- S Ithere is data on the Mk4 missile-
-~T

- S .missile emits _ femtoUrgs per second
-4 I I

-- T missile emits 94. femtoUrgs per second

Figure 4.1: Denying the existence of information using polyinstantiation.

Note that if the Confidential "directory" was not hidden from lower users, they would be able to
discover that an Object exists which they cannot observe. This is not usually a problem, but in
this example the application wishes Unclassified users to believe there is nothing they cannot
see.

Using polyinstantiation each Schema refers to a number of Collections, in this case two. Facts
are stored in the Collection of the appropriate classification.

Using view based classifications, each possible fact is listed in the Schema. Associated with
each possible fact is a Value Object which indicates whether the fact is true or not. The
classification of the Value Object is what the classification of the fact would be if it were true.

C [Schemas whose existence is Confidential

S there is data on the MU3 missile) T Pls7

Ithere is data on the MkM missile . S tnie

S M" missile emits 86. femtoUrgs per second) S T7C
MU missile emits 42.1 femtoUrgs per second -) T ase
MU missile emits A.l femtoUrgs per second) T ase

Smissile emits M.~ femtoUrgs per second -) T a

Figure 4.2: Denying the existence of information'-using views.

Using the Insert Low Approach, the facts are each stored in separate Fact Objects, which are
referred to by the Schema Object. The fact's classification is that of the Fact Object which holds
it.

14

C ISchemas whose existence is Confidential

) S Ithere is data on the - missile
- S 1the-reis data on the Mk4 missile

- S __missile emits - femto Ur per second I
T IJk4 missile emits 9-4.8 femitoUrgs per second I

Figure 4.3: Denying the existence of information using insert low.

So the ability of an application to deny the existence of information is independent of the chosen
database security technique. The problem is solved by using the Hierarchy to hide the existence
of schemas, though the notion of Hierarchy must be extended slightly to allow the existence of
the hiding mechanism to be hidden.

For a cover story to be effective, users who are being misled must not realise that the same kind
of information is also held at a higher level, thus the techniques discussed above for denying
the existence of information are necessary. Also, high users must be able to invent the cover
story and enter this with a low classification. This necessitates the user logging in and out or
the use of a multi-level workstation.

U ISchemas whose existence is Unclassified

) U 1_ is going to_
U I aj~ Crais going to &Romn=

)U 1_-is going to -to_
U DdgLa is going to Romance to d I~yjL~j

S[Schemas whose existence is Confidential

C - is going to - to
S Ib is going to Romance to invade I

- T I Cta is going to Roman to I

Figure 4.4: The problem with polyinstantiation for cover stories.

If these points are covered, any of the three techniques can be used to provide cover stories. This
is possible because each can provide the ability to lie about the existence of information.

Using polyinstantiation, the main difficulty is not allowing cover stories, but preventing
spurious ones from being created. Consider again the example shown in Figure 2.3, but
suppose a Top Secret user now wishes to stand down the invasion force. The user is able to
update the mission of the Magna Carta to standby, however, this change is not seen by any
Secret user. This leads to disaster. Obviously the correct course of action for the Top Secret user
is to log in at Secret and make the change, but the absence of any integrity check for duplicate
missions means this is not enforced. Effectively a new cover story has been invented when one
is not needed, as shown in Figure 4.4.

15

U [Schemas whose existence is Unclassified

U Mag-1.Iarta is going to Romane U
IM a Cara is oing to Eath -- U [F.e

U L is going to Rmance to delve ai U R-=-
[is going to Earth tod dj[ad - U fase

C [Schemas whose existence is Confidential

-b C MannCartis going to Rmanc to invad" e S -=
is going to BmAn to -.U t S rfalse

Figure 4.5: Cover stories using views.

View based classifications can be used to provide cover stories, as shown in Figure 4.5. Two
mission schemas are created, one for the cover story and one for the real mission. The real
mission is hidden from Unclassified users, while those with high clearances can see both but
know the difference between the two. The view gives the classification of Magna Carta being
put on standby as Secret, therefore a Top Secret user is prevented from updating it directly. By
logging in at Secret the user could set the mission to standby, but integrity constraints would
prevent this if the Magna Carta is already on an invasion mission, as in this example.

U ISchemas whose existence is Unclassified

) U Iis going to - I
U II[g -Cd is going to Roma=c

)U Iis going to_ tz_]
U I anaCata is going to Romanc to

[Schemas whose existence is Confidential

C I- is going to _t
----* S !Magna Crt is going to Ro=an= to ivd

Figure 4.6: Cover stories using insert low.

The method for providing cover stories with the insert low approach is similar to that with view
based classifications; two schemas are used, one for the cover story and one for reality. Figure
4.6 shows the example. The Top Secret user cannot change the missibn because the Fact Object
is Secret and this would constitute a downward flow. Once the user logs in at the Secret level the
update and integrity checks present no problem.

So any of the three techniques provide the ability to invent cover stories. With
Polyinstantiation cover stories can be invented "on the fly", while the other two techniques
require design time decisions to build the ability to have cover stories into the schemas.
Polyinstantiation therefore has the advantage that a cover story can be inserted without prior
thought, but this is also its weakness because there is no way of preventing the creation of
spurious cover stories.

If low information is to be altered by high users, and these changes are to be kept from low

users, then the problem is similar to that for cover stories. However, the difference is that the

16

low information is inserted by low users, which presents no problem. When the high users
wish to update the information the original is left unaltered, and again this presents no real
problem. Thus any of the three techniques for database security provide the ability to keep
changes secret.

In fact the only difficulty is to ensure that the high user can refer to the correct information
without confusion. Initially the low information is correct and this is what the high user will
want to see. However, once this is superseded by high information, the high users will
ordinarily wish to see the high information, though they may explicitly ask for the

--information as seen by low users...

So the solution is to use two schemas, one for the low version of the information and one for the
high version when this is different. Low users have access to the low schema and may be
prevented from detecting the high schema. High users have access to both schemas, but really
wish they could see them as one. This can be achieved using a view mechanism, but the view
definition will be complex and implementations usually insist that such views are read-only
(IS089].

Actually, all that is required is a special kind of project view, which is relatively simple to
implement. This yields the high version of a fact if it exists, otherwise it yields the low
version. When such a view is updated, the high version is updated, unless it does not exist in
which case a high insert is performed. Unfortunately, such special purpose requirements are
unlikely to be standardised, and so further research is necessary to investigate how updatable
views can be defined in general.

In most secure databases classifying sensitive information is enough of a control, since the
users will not be surprised to discover that there is information which is too highly classified
for them to see. However, there are extreme cases where the existence of such information must
be hidden. Further, the database may be required to deceive some users, by presenting them
with a "cover story" rather than the truth. Similarly, the database may be required to hide
changes made to some information from certain users.

Of the three techniques for achieving security in databases described in this paper,
Polyinstantiation is the most widely known technique, but View Based Classifications and the
Insert Low Approach are viable alternatives. Any of these three techniques could be used in a
DBMS which supports databases that deceive their users. However, the requirement is not
simply for a database that deceives, but for one where the deception is controllable.

This is where Polyinstantiation is weakest. Its inability to enforce even relatively simple
integrity constraints means that cover stories can occur unintentionally. The resulting
confusion could have serious consequences.

The two alternative approaches can both accommodate deception in databases, though in a
controlled way. They are also, of course, able to enforce general integrity constraints even
when deception is not required. As such, secure databases built using these techniques are
likely to have superior data integrity characteristics to those that use Polyinstantiation.

However, both View Based Classifications and the Insert Low Approach do require more
trusted code to implement the DBMS than with Polyinstantiation. As such it is more expensive
to achieve a DBMS of a given assurance using these techniques. However, applications which
use a Polyinstantiating DBMS may be more expensive to produce, because it is then up to the
application to enforce integrity.

In summary, Polyinstantiation is not the only technique for achieving security in databases.
even when the database is required to deceive some users, and the alternatives merit further

17

attention. Future research must devise database design methods for each database security

technique to allow fair comparisons to be made as to their effectiveness.

- [Be174]
"Secure Computer Systems: A Refinement of the Mathematical Model"
D E Bell & L J LaPadula, MTR-2547, Vol 3, Mitre Corp., April 1974

[Bums 90]
- "Referential Secrecy" .

R K Bums
Procs. IEEE Symp on Security and Privacy, Oakland, CA, May 1990, pp133..142

[Cummings 87]
"Compartmented Mode Workstation: Results Through Prototyping"
P Cummings, D Fullam, M Goldstein, M Gosselin, J Picciotto, J Woodward & J Wynn
Procs. IEEE Symp on Security and Privacy, Oakland, CA, April 1987, pp2..22

[Denning 871
"A Multilevel Relational Data Model"
D E Denning, T F Lunt, R R Schell, M Heckman & W R Shockley
Procs. IEEE Symp on Security and Privacy, Oakland, CA, April 1987, pp220..234

[Denning 881
"The Sea View Security Model-
D E Denning, T F Lunt, R R Schell, W R Shockley & M Heckman
Procs. IEEE Symp on Security and Privacy, Oakland, CA, April 1988, pp2 18 ..23 3

[Garvey 881
"ASD-Views"
C Garvey & A Wu
Procs. IEEE Symp on Security and Privacy, Oakland, CA, April 1988, pp85..95

[Haigh 901
"The LDV Secure Relational DBMS Model"
J T Haigh, R C O'Brien & D J Thomsen
Procs. IFIP WG11.3 Database Security Workshop, Halifax, England, September 1990

EISO891
"Information Processing Systems Database Language SQL with Integrity Enhancement"
ISO/IEC 9075:1989(E)

[Jsjodia 90]
"Polyinstantiation Integrity in Multilevel Relations"
S Jajodia & R Sandhu
Procs. IEEE Symp on Security and Privacy, Oakland, CA, May 1990, pplO4..115

[Keefe 90]
"Multiversion Concurrency Control for Multilevel Secure Database Systems'
T F Keefe & W T Tsai
Procs. IEEE Symp on Security and Privacy, Oakland, CA, May 1990, pp3 69 ..3 83

(KInod 881
"Making Databases Secure with TRUDATA Technology"
R B Knode & R Hunt
Procs. 4th Aerospace Comp Sec Applications Conf, Orlando, Florida, Dec 1988, pp 82..90

[Lunt 89
"Aggregation and Inference: Facts and Fallacies"
T F Lunt
Proes. IEEE Symp on Security and Privacy, Oakland, CA, May 1989, pp102..109

18

[Martin 90]
"Enterprise Modelling and Security Policies"
M Martin & J Dobson
Procs. IFIP WG1 1.3 Database Security Workshop, Halifax, England, September 1990

[Morgenstern 881
"Controlling Logical Inference in Multilevel Database Systems"
M Morgenstern
Procs. IEEE Symp on Security and Privacy, Oakland, CA, April 1988, pp245..255

[Sowerbutts 90]
"Database Architectonics and Inferential Security",
B J Sowerbutts & S Cordingley
Procs. IFIP WG11.3 Workshop of Database Security, Halifax, England, Sept 1990

[Terry 891
"A 'New' Security Policy Model"
P Terry & S Wiseman
Procs. IEEE Symp on Security and Privacy, Oakland, CA, May 89, pp215..228

[Wilson 88]
"Views as the Security Objects in a Multilevel Secure Relational DBMS"
J Wilson
Procs. IEEE Symp on Security and Privacy, Oakland, CA, April 1988, pp7 0 ..84

[Wiseman90a]
"Control of Confidentiality in Databases"
S R Wiseman
Computers & Security Journal, Vol 9, Num 6, October 1990, pp529..537

[Wiseman90b]
"The Control of Integrity in Databases"
S R Wiseman
Procs. IFIP WG11.3 Database Security Workshop, Halifax, England, Sept 1990

[Woodward 87]
"Exploiting the Dual Nature of Sensitivity Labels"
J P L Woodward
Procs. IEEE Symp on Security and Privacy, Oakland, CA, April 1987, pp23 ..30

19

REPORT DOCUMENTATION PAGE DRIC Referenas Number (11 known)

(As fa a Posa ile sheet~ should ccnt1 only unillied rwmslon. It It Is nmeeewy toenter dasiled irdomson, the field concerne
mudt be Awled to thci le daesllcalon, og (A), (C) or (S).

MEMO ~ ~ ~ ~ ~ ISU 2)3(SUE2 7 PL19

Fcrelua ang Ta n tcae o4 asslce

CwOnsregenc NamteadLcto

Repor Soo CiaefficidAhTitl Cialwicn (U, R, C)

UNCLISSITIE -

